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ABSTRACT: Several data-driven soft sensors have been applied for online quality prediction in polymerization processes. However,

industrial data samples often follow a non-Gaussian distribution and contain some outliers. Additionally, a single model is insuffi-

cient to capture all of the characteristics in multiple grades. In this study, the support vector clustering (SVC)-based outlier detection

method was first used to better handle the nonlinearity and non-Gaussianity in data samples. Then, SVC was integrated into the

just-in-time Gaussian process regression (JGPR) modeling method to enhance the prediction reliability. A similar data set with fewer

outliers was constructed to build a more reliable local SVC–JGPR prediction model. Moreover, an ensemble strategy was proposed to

combine several local SVC–JGPR models with the prediction uncertainty. Finally, the historical data set was updated repetitively in a

reasonable way. The prediction results in the industrial polymerization process show the superiority of the proposed method in terms

of prediction accuracy and reliability. VC 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41958.
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INTRODUCTION

Nowadays, the increasing reliance on polymers with specific

properties for different applications has been documented

extensively. Because of the industrial need and increasing social

need for the production of polymer grades in quantity and

diversity, there has been a growing awareness of the modeling

and control of polymer quality for increasing productivity and

reducing cost. The melt index (MI) of thermoplastic polymers,

including polyethylene and polypropylene, is one of the most

important product qualities; it determines the product grade

and affects the practical control strategy. MI is defined as the

mass rate of extrusion flow through a specified capillary under

prescribed conditions of temperature and pressure.1–3 However,

it is usually evaluated offline and infrequently with an analytical

procedure; this leaves the process without any real-time quality

indicator and usually leads to off-specification products and

profit losses. Therefore, the development of an online MI pre-

diction model is important. An alternative method is the devel-

opment of a detailed mechanistic model between MI and

certain easily measurable process variables.4 However, this

approach is time consuming and is often challenged by the

engineering activity, mainly because of the relatively high com-

plexity of the kinetic behavior and operation of the polymer

plants. It turns out to be infeasible for agile responsive

manufacturing because the products are typically short lived

and of small volume.

With the rapid development of computer and communication

technologies, process data have become widely available in the

chemical industry. As a result, in many chemical processes, the

increasing data-driven soft-sensor modeling methods have been

applied to infer or predict product qualities that are difficult to

measure online.5–9 One main advantage of these soft-sensor

models is that they can generally be developed quickly without

a substantial understanding of the phenomenology involved. An

extensive review of the prediction models for polymer proper-

ties and optimal-grade changeover control problems can be

found in Ohshima and Tanigaki.1 For MI prediction, existing

common soft-sensor methods include partial least squares,10,11

various neural networks,12–16 support vector regression (SVR)

and least squares support vector regression (LSSVR),17–22 Gaus-

sian process regression (GPR),23,24 relevance vector machine,25

and other methods.26–28 SVR-, LSSVR-, and GPR-based soft

sensors have attracted more attention recently because of their

nonlinear modeling ability.17–24 However, the selection of suita-

ble parameters for an SVR/LSSVR model is still difficult. Com-

pared with SVR/LSSVR, the GPR model can optimize its

parameters automatically.29–31 Additionally, GPR can simultane-

ously provide probabilistic information for its prediction; this is

an appealing property in the process modeling area.
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However, industrial data samples often contain various outliers.

The data quality can significantly affect the subsequent model-

ing methods.32,33 Therefore, the outliers should be removed

before the model is constructed. Compared to the modeling

methods development for MI prediction, this issue has been less

investigated so far, although better prediction performance can

be obtained by outlier detection.7 There are several methods

that have been shown to be able to detect outliers.32,33 However,

most conventional multivariate outlier detection methods

assume that the data samples are distributed in an (approxi-

mate) Gaussian manner. The assumption may be invalid when

the operating conditions change with time, and in fact, many

data in complex industrial processes may not be distributed in a

Gaussian manner. To address this problem, a support vector

clustering (SVC)34–36 outlier detection method, which can better

handle the process nonlinearity and non-Gaussianity, was

adopted.

Another disadvantage for most existing data-driven MI soft sen-

sors is that a global model is applied. However, the use of only

a single global model does not always give satisfactory predic-

tions in practice, especially for those complicated regions with

insufficient data samples. Recently, the just-in-time (JIT) mod-

eling method, which is also named lazy learning and originates

from the machine learning area, has been applied to chemical

process modeling.37–43 The JIT-based local model is built online

with samples that are similar to the historical data set around a

query sample when its prediction is required. Consequently, the

JIT model can cope with changes in process characteristics and

nonlinearity directly.37–43 In this study, the just-in-time Gaus-

sian process regression (JGPR) modeling method was applied to

online MI prediction. Moreover, the SVC outlier detection was

integrated into the JGPR modeling method to enhance the reli-

ability of quality prediction in four folds. First, the pattern of

the current query sample was recognized with the SVC-based

decision boundary. Second, a relevant data set with fewer out-

liers was adopted to construct a more reliable JGPR prediction

model. Third, an ensemble strategy was proposed to further

improve the reliability of the JGPR models. Fourth, the histori-

cal data set was updated in a repetitive manner to introduce the

samples with a new operating mode. These improvements made

the JGPR models more reliable for prediction.

Compared with previous data-driven MI soft sensors, two main

advantages of the proposed modeling method are summarized

as follows. The non-Gaussian outlier detection method and JIT-

based local modeling approach are integrated into a relatively

unified framework. Both the historical set and the SVC-based

decision boundary can be updated in a practical manner. More-

over, the ensemble strategy can improve the reliability of predic-

tion mainly because the local candidate models can be

automatically weighted in a reasonable manner.

The remainder of this article is organized as follows. The SVC

outlier detection algorithm is described in the next section. The

GPR, JGPR, and ensemble SVC-based JGPR soft-sensor model-

ing methods are proposed in the Ensemble Anti-Outlier Local

Prediction Model section. Also, the detailed implementation of

the enhanced soft-sensor framework with uncertain data

samples is described in this section. The proposed method is

evaluated by MI prediction in an industrial process in the

Industrial MI Prediction section. Comparison studies with other

methods are also discussed. Finally, concluding remarks are

made in the Conclusions section.

KERNEL-CLUSTERING-BASED OUTLIER DETECTION

The SVC outlier detection method mainly uses a kernel-

based clustering strategy. Its main idea is to map data points X

5fxkgN
k51 to a high dimensional feature space (H), that is,

xk ! / xkð Þ, and then to find a hypersphere with minimal

radius that contains most of the normal data points in H. This

sphere, when mapped back to the data space, can be separated

into several components, each enclosing a separate cluster of

data points.34 Given a set of input samplesX5fxkgN
k51, the

mathematical formulation of the SVC method is to find the

smallest enclosing spherical radius (R),34 that is

min W ðR; c; nkÞ5R21c
XN

k51

nk

s:t:

( k/ xkð Þ2ck2 � R21nk ;

nk � 0; k51; � � � ;N :

8>>>>>><
>>>>>>:

(1)

where c is the center of the enclosing hypersphere H(c, R),

respectively, and c > 0 is a regularization constant that deter-

mines the penalty on the slack variables nk � 0 and denotes the

trade-off between the volume of the sphere and the number of

target objects rejected.

The dual optimization problem can be obtained as follows:34

max Q bkð Þ5
XN

k51

bkh/ xkð Þ;/ xkð Þi2
XN

j51

XN

k51

bjbkh/ xj

� �
;/ xkð Þi

5
XN

k51

bkK xk ; xkð Þ2
XN

j51

XN

k51

bjbkK xj ; xk

� �

s:t:
XN

k51

bk51

0 � bk � C; k51; � � � ;N

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(2)

where bk is the Lagrange multiplier. The mapping of /ðxkÞ does

not need to be known because it is implicitly defined by the

choice of kernel function K xj ; xk

� �
5h/ xj

� �
;/ xkð Þi. That is, in

the SVC method, data points are mapped from the data space

to a high dimensional feature space with a kernel function.34

Here, the common Gaussian kernel function is adopted and

defined as follows:34–36

K xi; xj

� �
5h/ xið Þ;/ xj

� �
i

5e2kxi2xjk2=r2
(3)

where r > 0 is the kernel width. It should be noted that there

are only two user-specified parameters to implement SVC, that

is, the Gaussian kernel width (r) and the regularization con-

stant (c). The shape of the contour is governed by these two

parameters.34–36 The values of r and c can be selected simply
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with the common cross-validation procedure in the kernel

learning area.34–36

After the optimization problem is solved, R can be formulated

by eq. (4), and the distance between a query sample D xq

� �
and

the center of H in xq can be computed by eq. (5):34

R5
1

N

XN

k51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k/ xkð Þ2ck2

q

5
1

N

XN

k51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K xk ; xkð Þ22

XN

i51

K xi; xkð Þbi1
XN

i51

XN

j51

bibjK xi; xj

� �vuut
(4)

D xq

� �
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k/ xq

� �
2ck2

q

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K xq; xq

� �
22
XN

i51

K xq; xi

� �
bi1

XN

i51

XN

j51

bibjK xi; xj

� �vuut (5)

Therefore, the criterion for judging xq that lies in or outside H
in H is as follows:34

D xq

� �
> R; outliers

D xq

� �
� R; normal data

(
(6)

That is, a sample is assigned as the normal sample if the dis-

tance between it and the sphere center is not larger than R.

Otherwise, it is classified as an outlier. On the basis of this sim-

ple criterion, the outliers in the modeling set can be recognized

and detected. The SVC algorithm has some advantages over

other clustering algorithms for its ability to generate cluster

boundaries of arbitrary shape and to deal with outliers with a

soft margin constant that allows the sphere in the feature space

not to enclose all points.34 Additionally, unlike the Gaussian

distribution assumption adopted by most traditional multivari-

ate preprocessing methods for outlier detection, the SVC

approach does not assume that data are distributed or approxi-

mately distributed in a Gaussian manner. Therefore, SVC is

more practical for complicated industrial processes because

many process variables are not distributed in a Gaussian man-

ner and often contain various outliers.

ENSEMBLE ANTI-OUTLIER LOCAL PREDICTION MODEL

GPR Soft-Sensor Method

The soft-sensor model development based on the GPR frame-

work can be described as a problem whose aim is to learn a

model f that approximates a training set fXg5fxigN
i51 and fYg

5fyigN
i51 are the input and output datasets with N samples,

respectively. A GPR model provides a prediction of the output

variable for an input sample through Bayesian inference. For an

output variable of Y5 y1; . . . ; yNð ÞT, the GPR model is the

regression function with a Gaussian prior distribution and zero

mean, or in a discrete form29

Y5 y1; . . . ; yNð ÞT � G 0;Cð Þ (7)

where C is the N 3 N covariance matrix with the ijth element

defined by the covariance function, Cij5C xi; xj

� �
. A common

covariance function can be defined as follows:29

Cðxi; xjÞ5a01a1

XD

d51

xidxjd1v0exp 2
XD

d51

wdðxid2xjdÞ2
 !

1dijb

(8)

where xid is the dth component of the vector xi.dij51 if i5j;

otherwise, it is equal to zero. h5½a0; a1; v0;w1; � � � ;wD; b�T is the

hyperparameter vector defining the covariance function. As

depicted in eq. (8), the first two terms denote a constant bias

and a linear correlation term, respectively. The exponential term

takes into account the potentially strong correlation between the

outputs for nearby inputs. Additionally, the term b captures the

random error effect. By combining both linear and nonlinear

terms in the covariance function, the GPR model is capable of

handling both linear and nonlinear processes.29

With the adoption of a Bayesian approach, the hyperparameter

h can be estimated by maximization of the following log–likeli-

hood function:29

LðhÞ52
1

2
log detðCÞð Þ2 1

2
YTC21Y2

N

2
log 2pð Þ (9)

This optimization problem can be solved with the derivative of

the log–likelihood with respect to each hyperparameter. Detailed

implementations for training a GPR model can be found in the

work of Rasmussen and Williams.29 It should also be noted that

the main computational load for training a GPR model is about

O(N3; this is feasible for moderately sized training data sets

(less than several thousands) on a conventional computer. For

much larger data sets, sparse training strategies may be required

to reduce the computational burden.44,45

Finally, the GPR model can be obtained once h is solved. For a

test sample xq, the predicted output of yq is also Gaussian with

the mean (ŷ q) and variance (r2
ŷ q

) calculated as follows:29

ŷ q5kT
q C21Y (10)

r2
ŷ q

5rq2kT
q C21kq (11)

where kq5½C xq; x1

� �
;C xq; x2

� �
; � � � ;C xq; xN

� �
�T is the covari-

ance vector between the new input and the training samples,

and rq5C xq; xq

� �
is the covariance of the new input. In sum-

mary, the vector kT
q C21 denotes a smoothing term that weights

the training outputs to make a prediction for the new input

sample xq.29 In addition, eq. (11) provides a confidence level for

the model prediction; this is an appealing property of the GPR

method.

The quality of modeling data samples is very important for the

construction of GPR-based soft sensors. As shown in eqs. (10)

and (11), C and kq are mainly effected by the modeling sam-

ples. The prediction would be distorted if outlier samples were

preserved in the model. The more outlier samples there are in

the model, the worse the prediction is. Therefore, it is essential

to construct a GPR model with healthy data samples.

JGPR-Based Local Model

To solve a problem, one should not try to solve a more general

problem as an intermediate step.46 The estimation of the com-

plete density in place of the computation of the boundary

around a data set might require too much data and could result
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in bad descriptions. For complicated multigrade polymerization

processes, the direct application of a global or fixed model may

not be an easy task, mainly because the specification of the

structure of a global/fixed model is often difficult. Another limi-

tation is that it is difficult to quickly update a global/fixed

model when the process dynamics are moved away from the

nominal operating area. Additionally, the training samples are

not always enough to describe all of the process characteristics

in a global/fixed GPR model.

To overcome these problems and construct the local models

automatically, the JIT method has been developed as an attrac-

tive alternative to nonlinear chemical process modeling and

control.37–43 Several JIT-based nonlinear soft sensors have been

proposed previously.37–43 However, they are all deterministic

models [e.g., just-in-time-based support vector regression

(JSVR) and just-in-time least squares support vector regression

(JLSSVR) models41 rather than probabilistic ones. In the litera-

ture, few probabilistic soft sensors have been applied to multi-

grade processes with transitional modes. In this section, a

JGPR-based online modeling method is proposed for better

description of those complex regions. Generally, for xq, there

are three main steps in the construction of a JGPR model

online:

1. Determine the relevant samples to form a similar set (Ssim)

in the database S with some defined similarity criteria.

2. Construct a JGPR model fJGPR(xq) online with the relevant

set Ssim and the aforementioned formulations, that is, eqs.

(7–9).

3. Obtain the predicted output of yq, that is, ŷ q and r2
ŷ q

, for

the current xq, and then discard the JGPR model fJGPR(xq).

This is the basic framework of the JGPR online modeling

approach. For a new query sample, a new JGPR model can be

built with the same three-step procedure. Generally, the Euclid-

ean distance-based similarity is the most commonly used

index.37,38 The similarity factor (sqi) between the xq and the

sample xi in the dataset is defined as follows:37,38

sqi5exp 2dqi

� �
5exp 2kxq2xik

� �
; i51; � � � ;N (12)

where dqi is the distance similarity between xq and xi in the

dataset. The value of sqi is bounded between 0 and 1, and when

sqi approaches 1, xq closely resembles xi. Although a little better

prediction performance can be obtained with the distance-and-

angle-based similarity factor than with only the utilization of

the Euclidean distance, another parameter for the balance of the

distance and angle should be chosen.39 Additionally, some

correlation-based similarity criteria have recently been pro-

posed.40 All of these similarity criteria can be adopted to con-

struct a JGPR model. However, that was not the main scope of

this study, so it was not investigated in detail here.

With the similarity criterion in eq. (12), n similar samples

should be selected to construct a JGPR model. However, it is

difficult to determine how many similar samples are needed

beforehand. In particular, for an industrial process with multi-

ple grades, the relevant sets of query samples for different

grades are different. Generally, nmax similar samples can be

ranked according to the degree of the similarity. A cumulative

similarity factor (CSF or Sqn) can be adopted as follows:41

Sqn5

Xn

i51

sqi

Xnmax

i51

sqi

; n � nmax (13)

which denotes the cumulative similarity of the n most similar

samples compared to the relevant set Ssim. The CSF index can

simply compute the cumulative similarity, and then, it can

determine the n most similar samples.41 For example, the choice

of Sqn 5 0.8 means 80% of the most similar samples have been

selected. Consequently, the construction of the relevant set Ssim

with the CSF index is efficient.

Compared with JLSSVR/JSVR online modeling methods, two

advantages of JGPR-based soft sensors can be obtained. One is

that the probabilistic information can be provided for its pre-

diction. The other, the modeling procedures of JGPR through

Bayesian inference, is simpler and more straightforward. For

JLSSVR/JSVR modeling methods, the kernel function and the

related parameters should be carefully chosen. This is not an

easy task, especially for complicated industrial processes.

Enhanced SVC–JGPR Soft Sensors

On the basis of the aforementioned outlier detection and mod-

eling methods, the main implementations for the complicated

polymerization process can be formulated. The method is sim-

ply denoted as SVC–JGPR mainly because it integrates the SVC-

based outlier detection and JGPR-based online soft-sensor mod-

eling approach into a unified framework. The step-by-step pro-

cedures of the integrated SVC–JGPR modeling method are

summarized as follows:

1. Collect the process measured input and output samples of

the polymerization process. The initial data set can be noted

as S5fX;Yg5fxi; yigN
i51.

2. Apply the SVC method to data points X5fxigN
i51, and then,

the enclosing hypersphere H(c, R) can be obtained. The

data samples in S are relatively enough, and thus, the

parameters of SVC can be simply selected with the cross-

validation procedure. In this step, eqs. (1–4) are applied to

solve the SVC problem.

3. The outliers in X5fxigN
i51 can be temporarily moved in the

feature space with eqs. (5) and (6) to obtain a tight bound-

ary. Correspondingly, for a refined global modeling data set

S05fX0;Y0g5fxi; yigN0

i51>, the SVC and GPR can be com-

bined into an SVC–GPR global soft sensor.

4. For xq, first judge if it is a normal sample with eqs. (5) and

(6). If D(xq) > R, xq is considered a global outlier for the

data set X0. This is unsuitable for prediction in such a situa-

tion. Go to step 7. Otherwise, if D(xq) � R, xq is considered

a global normal sample for the data set X0. Go to step 5.

5. For the online prediction for xq, first determine the relevant

set Sq5fXq;Yqg5fxi; yign
i51 with eqs. (12) and (13). Apply

the SVC method to these data points Xq to find a local

hypersphere Hq(cq, Rq). The modeling samples are relatively

few, and thus, the suitable parameters of SVC are difficult to
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choose. With a candidate SVC model, some outliers in Xq

can be temporarily detected in the feature space with this

local hypersphere. These removed samples can be treated as

the dissimilar pattern for xq. Finally, with M pairs of candi-

date parameters [cm, rm], m 5 1,. . .,M,34–36 M refined local

modeling data sets denoted as ½cm;rm�; m51; � � � ;M , m 5

1,. . .,M for xq can be obtained.

6. Altogether, M JGPR-based local models denoted as fJGPRðxq;

Sq;mÞ; m51; � � � ;M are built online for prediction with,

Sq;m5fxi; yignm

i51;m51; � � � ;M . Correspondingly, several pre-

dicted values (ŷ q;m;m51; � � � ;M) and their predicted varian-

ces (r2
ŷ q;m
;m51; � � � ;M) can be obtained, respectively. Before

the actual quality value is obtained, the available informa-

tion useful for prediction is the predicted variance. Gener-

ally, a smaller variance means that the prediction is more

reliable. As a simple method, the prediction with the small-

est variance can be used as the final prediction:
ŷ q5 arg

fJGPRðxq ;Sq;mÞ
min

m51;���;M
r2

ŷ q;m
(14)

In this study, as an alternative, ensemble learning was further

adopted to combine several SVC–JGPR models. For regres-

sion, the main idea of ensemble learning typically generates

several candidate models, which are combined to make a

prediction. Compared to a single regression model, it has

been demonstrated that the combined ensemble model can

improve the prediction performance and prevent the overfit-

ting problem.23,47 The proposed ensemble strategy is similar

to the weighted rule in the literature.23 However, the previ-

ous modeling approach was global, and the outlier detection

was not considered in their study. Here, ensemble learning

was investigated in the local learning manner with relatively

fewer samples. An ensemble SVC–JGPR [ensemble support

vector clustering (ESVC)–JGPR] model was proposed. Gener-

ally, if a candidate model has a larger predicted variance, the

weight on it should be smaller. Correspondingly, a candidate

model should have a larger weight if its predicted variance is

smaller. On the basis of the analysis, the final ensemble pre-

diction and the related weights for candidate models could

be formulated as follows, respectively:

ŷ q5
XM
m51

wq;mŷ q;m;m 5 1; � � � ;M (15)

wq;m5

1
r2

ŷ q;mXM
m51

1

r2
ŷ q;m

5
1

r2
ŷ q;m

XM
m51

1

EFLOO
t ;m

;m 5 1; � � � ;M (16)

7. Once the assay yq is obtained, xq can be reintroduced into X

to judge if it is normal. That is, the initial global data set is

updated with X 5 {X, xq}. Before the online prediction of a

new query sample, go to steps 2 and 3 to update the refined

global modeling data set S05fX0;Y0g5fxi; yigN0

i51. This step

can be implemented offline.

It should be noted that the computational load of SVC (includ-

ing the selection of the model parameters) for larger data sets is

not trivial. Fortunately, in this study, the global SVC outlier

detection model was solved in an offline manner. Additionally,

for xq, the local SVC model was always solved feasibly with a

small sample size much less than several hundreds. When the

SVC method is applied to complicated industrial processes, a

tight decision boundary for outlier detection may delete a few

normal samples, especially when the training samples are not

sufficient. For example, for a query sample of the new operating

mode, it will likely be treated as an outlier sample. To overcome

this problem, as shown in step 7 of SVC–JGPR, the samples in

X should be explored in a repetitive manner to use the useful

information as much as possible. Consequently, the samples

temporarily treated as outliers in step 3 of SVC–JGPR can go

back to the normal pattern when the samples of the new oper-

ating mode increase to an extent.

The main advantages of the SVC–JGPR-based soft-sensor

method can be summarized as follows. First, the distribution

of the process data has no Gaussian assumption; this indicates

that the non-Gaussian data variables widely encountered in

industrial processes can be handled. Second, mainly because of

the nonlinear data description ability of the SVC method, the

outlier detection for nonlinear process variables can be

addressed with this framework. Through the search of a

hypersphere in the feature space, a tight boundary of the data

distribution can be formulated for outlier detection. Third,

with more reliable data samples for the construction of a local

JGPR soft sensor, a better quality prediction can be obtained.

Fourth, the SVC is extended to maintain the historical data

set. The refined modeling set and its global SVC decision

boundary can be updated gradually by the introduction of

new data samples.

The main properties of the ESVC–JGPR, SVC–JGPR, SVC–GPR,

JGPR, and GPR soft-sensor modeling methods are listed in

Table I. The main property of SVC–JGPR is that it can integrate

outlier detection and JIT-base local modeling into a relatively

unified framework. Moreover, as mentioned previously, both

the historical set and the SVC-based decision boundary can be

updated in a practical and reasonable manner. Furthermore,

compared with SVC–JGPR, the ESVC–JGPR method can

achieve more reliable prediction performance mainly because

the local models can automatically assign smaller weights than

models that are certain about their predictions. These properties

make the proposed approach different from the global GPR

method.

INDUSTRIAL MI PREDICTION

Data Description

In this section, the ESVC–JGPR and SVC–JGPR soft-sensor

modeling methods were explored by online MI prediction in an

industrial polyethylene production process in China. All of the

data samples were collected from daily process records and cor-

responding laboratory analysis. The product quality in steady-

state grades was commonly analyzed in the laboratory every 4 h

for 1 day. Without online analyzers for MI, off-grade products

and materials would inevitably be produced in industrial poly-

ethylene production processes. The process input variables cor-

related with the MI were selected. These input measurable

variables included the reactor temperature, pressure, liquid level,

and flow rate of the main catalyst.
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A set of about 360 samples was investigated in this study. The

first 200 samples were treated as the initial historical samples.

The remaining set of about 160 samples was used for testing.

However, because of commercial secrecy, the details of the

industrial data set cannot be provided as supplemental material.

From previous research, an alternative data set of 331 samples

for an industrial polyethylene production process in a large

plant in Taiwan can be obtained via the Internet at http://wave-

net.cycu.edu.tw/~cpse/web/Resources.htm.43 This can be used as

a public set for academic research.

To explore the data distribution of the modeling data samples,

the normality of four process input variables was evaluated, as

shown in Figure 1(a–d), respectively. These four process varia-

bles violated the Gaussian distribution, which is represented

by the dashed line in Figure 1(a–d). Additionally, as an illus-

trated in Figure 2, the first to third process input variables

were nonlinearly correlated. Moreover, the data samples were

distributed irregularly. Some operating areas had more data

samples, whereas some areas showed relatively sparse data dis-

tribution. Therefore, the use of only a single global model

may not be enough to describe all of the process

characteristics.

Modeling Software and Performance Assessment

The modeling software was MatLab (Matrix Laboratory). The

simulation environment in this case was MatLab V2009b with

a CPU main frequency of 2.3 GHz and 4 GB of memory. The

basic GPR MatLab codes originally demonstrating the main

algorithms from Rasmussen and Williams29 can be down-

loaded via the Internet at http://www.gaussianprocess.org/

gpml/code/matlab/doc/. Further information for GPR and

other related kernel learning algorithms can also be found via

the Internet at http://www.gaussianprocess.org/ and http://

www.support-vector.net/software.html. All of the algorithms of

the ESVC–JGPR, SVC–JGPR, and JGPR soft-sensor modeling

methods were written with MatLab codes to generate the

results in this study.

Two common performance indices, including root mean square

error (RMSE) and relative root mean square error (RE) were

adopted to quantitatively evaluate the prediction performance

of different soft-sensor models. The RMSE and RE indices are

defined, respectively, as follows:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNtst

q51

yq2ŷ q

Ntst

� �2
vuut (17)

RE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNtst

q51

yq2ŷ q

yq

� �2

=Ntst

vuut (18)

where ŷq and yq are the predicted and actual values, respectively,

and Ntst is the number of test samples.

RESULTS AND DISCUSSION

Reliable sensor measurements and data collection play crucial

roles in process modeling.7 However, the modeling data set con-

tains some obvious outliers and inconspicuous outliers as they

are masked by their adjacent outliers. Several traditional multi-

variate outlier detection methods are based on Mahalanobis dis-

tance (MD). Additionally, there are also some methods that are

based on robust distance and other measures.32,33 Despite differ-

ences between these outlier detection methods, most of them

are based on the assumption that data samples are distributed

or approximately distributed in a Gaussian manner. To show

the superiority of SVC, the MD-based outlier detection method

was investigated here for comparison. After MD-based prepro-

cessing, the MD and GPR could be simply combined together

to form an MD–GPR soft sensor. Finally, six soft-sensor model-

ing methods altogether, denoted as ESVC–JGPR, SVC–JGPR,

JGPR, SVC–GPR, MD–GPR, and GPR for short, were

investigated.

Details about the online MI prediction comparisons among the

ESVC–JGPR, SVC–JGPR, JGPR, SVC–GPR, MD–GPR, and GPR

methods are tabulated in Table II. About 25 samples among all

of the 160 test samples were treated as global outlier samples

with SVC (step 4 of SVC–JGPR, as discussed earlier) before we

made an online prediction. For a justified comparison, they are

not included in the results in Table II. The results in Table II

clearly show that the ESVC–JGPR method achieved the best

prediction performance with the smallest RMSE and RE values.

The corresponding box plots of the relative prediction errors

(i.e.,
yq2ŷ q

yq
) using all five different methods are shown in Figure

3. On each box (e.g., ESVC–JGPR), the edges of the box are the

first and third quartiles, and the band inside the box shows the

second quartile (i.e., the median). The whiskers above and

below the box show the locations of the minimum and

Table I. Main Property Comparisons for Several Data-Driven Soft-Sensor Models: ESVC–JGPR, SVC–JGPR, SVC–GPR, JGPR, and GPR

Soft-sensor model Property Outlier detection (description) Combination of local models

ESVC–JGPR Local and unfixed Yes (for non-Gaussian and
nonlinear multivariate data)

Ensemble with the inverse of
model uncertainty

SVC–JGPR Local and unfixed Yes (for non-Gaussian and
nonlinear multivariate data)

Minimization of the local model
with predicted variance

SVC–GPR Global and fixed Yes (for non-Gaussian and
nonlinear multivariate data)

No

JGPR Local and unfixed No No

GPR29 Global and fixed No No
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maximum. Several outliers are plotted individually. We found

that the proposed ESVC–JGPR method had the narrowest

ranges of the relative prediction errors; this implied the best

prediction performance. Additionally, the results of the RMSE

and RE values in Table II and Figure 3 show that ESVC–JGPR

obtained a better distribution of the relative prediction errors

than the other approaches because the later ones showed unreli-

able prediction results for some test samples.

Among all six methods, SVC–GPR, MD–GPR, and GPR were

global. It was unsurprising that the single GPR model had the

worst prediction performance. The SVC and MD outlier detec-

tion methods deleted some outliers and then improved the

sequential soft-sensor model. As shown in Table II and Figure

3, SVC–GPR was superior to MD–GPR, with a better distribu-

tion of the relative prediction errors. This result indicates that

for non-Gaussian-distributed data samples, SVC performed bet-

ter than traditional MD-based outlier detection methods.

ESVC–JGPR, SVC–JGPR, and JGPR are three methods that

were different from the other three aforementioned global

methods. They discussed in particular in this section. Exhibit-

ing a better local prediction performance, JGPR had smaller

RMSE and RE values than GPR. For online MI prediction,

the overall prediction results of the ESVC–JGPR, SVC–JGPR,

and JGPR methods are shown in Figure 4. As analyzed previ-

ously, the data samples showed uneven, non-Gaussian, and

nonlinear relationships (as also shown in Figure 2). For online

construction of a local model, similar samples were carefully

chosen. With some outliers or some samples with different

modes, the prediction performance of a local model might be

degraded. Furthermore, the ensemble model showed a more

reliable prediction performance than its single local model.

Consequently, all of the results shown in Figure 4 and Table

II validate that ESVC–JGPR was generally superior to SVC–

JGPR and JGPR.

Figure 1. Normality tests of the (a) first, (b) second variable in the industrial polyethylene production process (training set), (c) third, and (d) fourth

variables in the industrial polyethylene production process (training set). [Color figure can be viewed in the online issue, which is available at www.inter-

science.wiley.com.]
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In contrast to traditional neural networks and SVR-based deter-

ministic modeling methods,12–22 the GPR-based methods pro-

vided probabilistic information for prediction. Comparisons of

the predicted variance values for the test samples

(rŷ q
; q51; � � � ;Ntst) with two online local modeling methods,

ESVC–JGPR and SVC–JGPR, are shown in Figure 5. The ESVC–

JGPR method exhibited a smaller prediction uncertainty than

the SVC–JGPR method, especially for the test samples after

number 70. The 1
Ntst

XNtst

q51
rŷ q

values of ESVC–JGPR and SVC–

JGPR were 1.54 and 1.80, respectively. A smaller value of 1
NtstXNtst

q51
rŷ q

indicated a smaller uncertainty of the prediction.

This means that ESVC–JGPR not only achieved a more accurate

prediction performance (smaller RMSE and RE values) but also

obtained more reliable prediction. Consequently, the probabilis-

tic information could help operators/engineers use the predic-

tion information in a better way.

It should be noted that with the proposed strategy, the histori-

cal data set was updated by the introduction of new samples in

a repetitive manner. As a result, some samples previously mis-

taken as global outliers could be recognized as global normal

samples with new operating modes. Nevertheless, the JGPR

model could not distinguish samples with new operating modes

from outliers. Additionally, the historical data set of JGPR was

not refined in a suitable way. For a query sample, the total

computational time of ESVC–JGPR for online modeling and

prediction was less than 20 s; this was larger than that with the

use of only JGPR. However, the online modeling and prediction

time was much lower than the 4-h assaying time in the

Figure 2. Process input variable relationships in the industrial polyethyl-

ene production process (training set). [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

Table II. Comparisons of the Online Prediction Errors with Six Different

Data-Driven Soft-Sensor Models

Soft-sensor model RMSE RE (%)

ESVC–JGPR 4.82 14.0

SVC–JGPR 5.21 15.7

JGPR 6.87 20.6

SVC–GPR 6.90 18.8

MD–GPR 8.48 25.6

GPR29 9.66 28.9

The best results are set in boldface type.

Figure 3. Comparisons between the relative prediction error distributions

of the MI in the industrial polyethylene production process via a box plot

with the ESVC–JGPR, SVC–JGPR, JGPR, SVC–GPR, MD–GPR, and GPR

soft-sensor models. The edges of each box are the first and third quartiles,

and the band inside each box shows the median. The whiskers above and

below each box show the locations of the minimum and maximum,

respectively. Several outliers are plotted individually (test set). [Color fig-

ure can be viewed in the online issue, which is available at www.inter-

science.wiley.com.]

Figure 4. Parity plot based on assay values against the predicted values

with three online local modeling methods: ESVC–JGPR, SVC–JGPR, and

JGPR (test set). [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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laboratory for the offline analysis of the MI. Moreover, from

the viewpoint of industrial polymerization processes, an accu-

rate online MI prediction is much more important than the

computational loads.

Therefore, from all of the obtained results and comparison anal-

yses, the proposed ESVC–JGPR soft sensor performed better

than the other methods in terms of online MI prediction. Note

that the incremental methods48 could be adopted to update the

offline SVC global outlier detection model and to then reduce

the overall computational burden, especially for a relatively large

data set. Additionally, if available, some domain knowledge and

expert rules could also be combined into the soft-sensor model-

ing methods. For example, the number of JGPR-based local

models could be reduced when the method is integrated with

the operation mode detection in the prediction task.22 The tran-

sitional modes are much more difficult to model, and they were

neglected in this study. So, there are still several interesting

research directions worth investigating in the future to further

enhance the accuracy and transparency of industrial MI soft-

sensor models.

CONCLUSIONS

The development of reliable soft sensors for complex industrial

polymerization processes is still difficult. In this study, we

explored reliable local soft-sensor models for online quality pre-

diction when the modeling data samples were not distributed in

a Gaussian manner and contained outliers. Compared to several

traditional outlier detection approaches, SVC does not assume

that data samples are distributed in a Gaussian manner. The

process nonlinearity and non-Gaussianity can be better handled

with a tight boundary. Additionally, for local modeling, a rele-

vant data set with fewer outliers can be adopted to build a

more reliable local prediction model. ESVC–JGPR and SVC–

JGPR were proposed as two local soft sensors. Their advantages

were demonstrated and compared with other soft sensors in

terms of online industrial MI prediction. ESVC–JGPR is recom-

mended for the ease of determining the model parameters and

its better reliability in prediction. It should be noted that the

soft-sensor modeling method can also be applied to predict

other difficult to measure parameters, such as the polymer qual-

ity, polymer melt index, and mixture of initiators. These poly-

merization processes include the polymerization of methyl

methacrylate, the polymerization of nylon 6,6, and rubber-

mixing processes.14,49
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